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Strongly localized modes in discrete systems with quadratic nonlinearity
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We report the existence of bright and dark families of strongly localized modes in discrete systems with a
quadratic nonlinearity. It is shown analytically and confirmed numerically that the second-harmonic field may
form stable bound states with fundamental fields of different topologies. Furthermore, we found different types
of solutions having analogs neither in other discrete models nor in continuum models and studied the back-
ground stability of dark modes.@S1063-651X~98!03902-6#

PACS number~s!: 42.65.Tg, 03.40.Kf, 46.10.1z, 63.20.Pw
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Since the original investigations@1–6# a considerable and
steadily growing amount of interest has been centered on
study of intrinsic strongly localized modes~SLMs! in non-
linear discrete systems because of their relevance in var
fields, e.g., solid-state physics, optics, and biology@7–13#.
The dynamics of many systems is described by the disc
nonlinear Schro¨dinger equation~DNLSE! or by its modifica-
tions. Prominent examples are lattices with different non
ear potentials as well as arrays of linearly coupled opt
waveguides with a cubic nonlinearity. Bright and dark SLM
may exist in this environment@7–9,12,13# where bright ones
are formed due to modulational instabilities~MI ! of station-
ary nonlinear solutions. Dark SLMs, on the contrary, nee
modulationally stable background. The experimental dem
stration of these phenomena was reported in@14,15#.

Within the past several years a renewed interest
emerged in nonlinear systems where the dynamics of
fields can be described by two Schro¨dinger equations
coupled by a quadratic nonlinearity. With respect to the c
tinuous case, representative examples are the envelope
lution of an optical field in bulk media or in film waveguide
with a quadratic nonlinearity@16,17# as well as the dynamic
of long-wavelength excitations at the interface between
organic crystals@18,19#. The particular form of nonlinearity
leads to energy exchange between the two field compon
and additionally brings another crucial parameter, the ph
mismatch, into play. Although these systems are not in
grable, stable mutually locked solitary waves may exist
continuous media, which was experimentally confirmed
optics @17#.

At the present time, quickly developing technologies su
as epitaxial growth, ion exchange in solids, and electr
poling allow for fabrication of different kinds of thin films
multilayer structures, and arrays of optical waveguides
advanced photonics applications. The discrete nature of s
structures is responsible for qualitatively different types
excitations and effects connected with them. In particu
the so-called Fermi-resonance interface modes were sh
to appear owing to the Fermi resonance between excitat
of molecules situated at the interface between two orga
molecular crystals. Moreover, the above-mentioned exc
tions may form bound states of different symmetries a
demonstrate interesting nonlinear properties such as bist
571063-651X/98/57~2!/2344~6!/$15.00
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ity and thus represent promising laboratories for future g
eration of optoelectronic devices@18,20,21#.

Another prominent example of discrete systems rep
sents arrays of coupled optical waveguides. Applications
localized modes in such systems for all-optical informati
processing were discussed in@12,13#. We mention that only
cubic ~or x (3)! nonlinearity of waveguides has been cons
ered, although quadratically nonlinear media provide a m
greater variety of effects@22# that, more importantly, are
obtainable for lower power compared to thex (3) scenario.

A relevant question not addressed until now is how d
creteness affects the nonlinear dynamics in systems
quadratic nonlinearity far beyond the continuum limit. Th
the aim of this paper is to demonstrate the existence of fa
lies of bright and dark highly localized two-field states and
study their fundamental properties.

The evolution of the two-component field in a discre
quadratic medium may be described by nonlinearly coup
difference-differential equations as

i
dAn

dz
1ca~An111An21!12gAn* Bn50,

~1!

i
dBn

dz
1cb~Bn111Bn21!1bBn1gAn

250.

If an array of optical waveguides is concernedAn and Bn
represent the fundamental frequency~FF! and the second-
harmonic ~SH! amplitudes in thenth waveguide, respec
tively. Similarly, they designate the respective vibration a
plitudes of thenth molecule at a molecular interface. Th
evolution variablez denotes either the propagation distan
along the waveguides or the time in the vibration proce
ca,b andg are the linear and nonlinear coupling coefficien
respectively, andb is either the wave-vector mismatch or th
detuning from the Fermi resonance. Equations~1! were con-
veniently normalized by using both a characteristic len
~or time! and amplitude.

It is evident that in the long-wavelength case~slow varia-
tion with n! the dynamic equations~1! transform into the
continuum limit. Several types of localized solutions to th
system, viz., bright, dark~so-called twin-hole!, and semidark
solitary waves have been discussed in optics and solid-s
physics@16–19,23#. This gives some evidence that simila
2344 © 1998 The American Physical Society
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57 2345STRONGLY LOCALIZED MODES IN DISCRETE . . .
localized solutions may exist in the discrete case as w
However, until now it had not been clear which shape
continuum solitary-wave solutions were going to attain
asymptotically diminishing width, i.e., for strongly localize
modes.

Prior to the study of SLMs, it was useful to look for th
stationary plane-wave solutions to Eqs.~1!. Inserting the an-
satzAn(t)5a exp@i(qn2kz)#, Bn(t)5b exp@2i(qn2kz)# into
Eqs.~1!, we get a relation between the FF and SH amplitu
a andb as

a254b21
b

g
~4ca cosq22cb cos 2q2b!.0. ~2!

As a matter of fact, a certain SH amplitudeb applies to a FF
amplitudea of either sign. This behavior will be encountere
for SLMs too. The dispersion law, which relates the wa
vector in propagation direction (k) with the transverse wave
vector (q) and SH amplitudeb,

k522~gb1ca cosq!, ~3!

shows that the nonlinear shift22gb determines the wave
vector of the nonlinear mode provided the nonlinear c
pling exceeds the linear one (ugbu@ca). As it will be shown
below, this very condition is a prerequisite to the formati
of SLMs.

To identify SLMs we extend an approach used by Pa
@6# for one-component vibrations in nonlinear lattices towa
the two-field case. Because we are concerned only with r
ing solutions, i.e.,q50,p, we may writeAn5anexp(2ikz),
Bn5bnexp(22ikz), wherean ,bn can attain either sign. As
usual, we may classify SLMs as symmetric or antisymme
bright or dark states localized mainly at a single~odd mode!
or two ~even mode! sites.

To obtain the amplitudes at these sites and for the nea
neighbors we impose the respective symmetry on the an
To this end we introduce amplitudesrn andmn normalized
by the maximum valueap ,bp , that is, an5aprn , bn
5bpmn , and indicate odd and even modes byp5o,e, re-
spectively. As mentioned previously, strong nonlinear c
pling is assumed, which allows the introduction of small p
rameters such as

«p52ca /k'ca/2gbp ,

dp52cb /~2k1b!'cb /~4gbp2b!. ~4!

Seeking an odd symmetric bright SLM as a solution with
vanishing value ofr6n ,m6n for n>2 and r215r1 , ur1u
!r051, m215m1 , and um1u!m051, we insert the ansat
for An andBn into Eqs.~1! and solve the resulting system o
algebraic equations. Neglecting second-order terms in
small parameters, we get

ao
2'4bo

22bbo /g.0, r1'«o , m1'do , ~5!

where the SH amplitudebo is a free parameter. Note that a
extremely high localization~at only one site! of the FF or SH
field may occur if the linear coupling is very small~ca or cb
ll.
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tend to vanish!. The method used permits the calculation
SLM amplitudes with any prescribed accuracy. Here, in
cusing on the physical aspects of these phenomena we
strict ourselves to the first-order approximation.

Accordingly, an even bright SLM looks liker6n'0,
m6n'0 for n>3 and ur62u!r2151, um62u!m6151, r1
5s, wheres51 and21 correspond to the symmetric an
the antisymmetric modes, respectively. The amplitudes
given by

ae
2'4be

21be~2sca2cb2b!/g.0, r22'«e ,

r25sr22 , m62;de . ~6!

For obvious symmetry reasons the subscriptn50 was aban-
doned for even modes. In looking at Eqs.~5! and ~6! it is
evident that the ratiob/gb.0 has an upper bound for SLM
to exist.

Thus odd symmetric and even symmetric as well as a
symmetric SLMs can be identified from Eqs.~4!–~6!. Note
that for even solutions four different types of the FF fie
correspond to one SH pattern.

A characteristic feature of nonlinear discrete systems c
sists in that the excitation induces an effective periodic
tential similar to the Peierls-Nabarro~PN! potential ~see,
e.g.,@2,8,9# and references therein!, which breaks the trans
lational invariance and may thus prevent the dislocation
SLMs. Moreover, the PN potential was frequently used
predict the stability behavior of a particular SLM@9#. Thus
the identification of the PN barrier between two differe
SLMs is a relevant subject to be addressed here.

Equations~1! exhibit two integrals of motion that repre
sent the total intensity and the Hamiltonian and can be w
ten as

I 5(
n

~ uAnu212uBnu2!, ~7!

H52(
n

~caAnAn11* 1cbBnBn11* 1gAn
2Bn* 1 1

2 buBnu2

1c.c.!. ~8!

Even and odd SLMs of equivalent topology may be cons
ered as realizations of a common mode centered either a
in between the array~lattice! elements@8#. Thus we have to
require the same intensity~7! for both SLMs, which results
in a relation betweenbo and be . Using this relation, the
difference between the Hamiltonians of the odd (Ho) and the
even (He) SLM can be calculated. This difference is like
wise the PN barrier that separates both realizations from e
other. As a matter of fact if the PN barrier is nonzero and
transverse wave vectorq is less than a certain critical valu
the SLM is at rest. For cubic nonlinearities it has been sho
that stability requires a minimum for in-phase modes o
maximum of the PN potential for out-of-phase, or stagger
modes@9#. This change of the stability criterion reflects th
symmetry properties of the relevant dynamic equation a
the Hamiltonian. If a pure on-site cubic nonlinearity is co
cerned, in-phase SLMs may only exist if the nonlinearity
positive where a negative nonlinearity supports out-of-ph
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2346 57S. DARMANYAN, A. KOBYAKOV, AND F. LEDERER
SLMs. Because the sign of the PN barrier also changes,
SLMs are stable for any sign of nonlinearity@9#.

For quadratic nonlinearities dynamics Eqs.~1! lack the
above symmetry and a stable solution requires a minimum
the PN potential. In turn, it can be shown thatHo,He holds
always regardless of the sign of the nonlinearity (gb).
Hence odd solutions are expected to be stable, unlike uns
gered and staggered even modes, which are unstable.
was indeed confirmed by direct numerical calculations p
sented in Figs. 1~a! and 1~b! ~for convenience excitations ar
enumerated by positive numbers!. A stable propagation o
the perturbed odd SLM as well as a decay of the even m
~both FF and SH fields are unstaggered!, which immediately
transforms to an oscillatory state, can be clearly seen.

We mention that forgb.0 even antisymmetric and fo
gb,0 even symmetric SLMs are neither unstaggered
staggered solutions and can be obtained from those
changing the phase of excitations on sitesn>1 by p. Hence
we called these modestwisted~unstaggered and staggered!.
Such SLMs in the systems described by the DNLSE h
been shown to exhibit quite interesting properties@24#. In

FIG. 1. Evolution of the normalized intensity of bright SLM
The FF component is shown and the SH field has a similar form~a!
A stable odd SLM,~b! a slightly antisymmetrically perturbed eve
SLM consisting of both unstaggered FF and SH components,
~c! a strongly ~symmetrically and antisymmetrically! perturbed
even SLM consisting of twisted FF and unstaggered SH com
nents. The parameters areca5cb50.15,b50, g51, andb51.
dd
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e
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e

particular, unlike the ‘‘traditional’’ even unstaggered an
staggered modes they are stable, but only above some cr
localization degree@24#, which explains the absence o
twisted solitonlike solutions in the continuum limit. It i
worth realizing that for large mismatch Eqs.~1! transform to
the DNLSE and therefore twisted SLMs could also
counted among the solutions of Eqs.~1!. However, the two-
field modes in discrete media with quadratic nonlinear
represent a pair oftwistedFF andunstaggeredSH fields. As
can be inferred from Fig. 1~c!, such a topology drastically
influences stability properties of the SLM. The twisted fu
damental field tends to stabilize the whole mode, which,
ing much more strongerly perturbed compared than the
staggered SLM @Fig. 1~b!#, demonstrates rather stab
behavior.

Now a remark is in order. Because we have conside
the case of small coupling constants, it is worth mention
two additional approaches applied to study dynamics of
calized solutions in other discrete and continuous syste
These are~i! the so-called semiclassical or dispersionle
limit of partial differential equations~@25# contains a number
of papers on this subject! and~ii ! the ‘‘anticontinuous’’ limit,
which corresponds to asymptotically vanishing coupling
discrete systems~see, e.g.,@26# and references therein!. The
first method is exclusively applicable to continuous syste
and thus not so relevant to thestrongly localizedmodes we
deal with. We only note that localized modes initially excite
in the continuous system with the infinitesimally small d
persion would spread, demonstrating rather complicating
namics@25#. As far as the second approach is concerned,
concept of an anticontinuous limit has been used to prove
existence of SLMs for one-field time-reversible or Ham
tonian discrete systems@26#.

Now we proceed in looking for dark SLMs. To this en
we substituteAn5awnexp(2ikz) and Bn5bcnexp(22ikz)
into Eqs.~1!, wherea and b are taken from the stationar
plane-wave solution~2! and use the same small paramete
~4! but drop the subscriptp. The odd symmetric dark mod
can be written asw6n5c6n51 for n>2 and

w0'2«, w61'11~«1d!/2, c0'2d, c61'11«.
~9!

We note that the shape of the SH part of this dark solut
does not change for the antisymmetric or kinklike mode
the FF wave@w050, w2n52w1n , wherew1n is given by
Eq. ~9!#.

The even dark mode looks likew6n5c6n51 for n>3
and

w61'«, w62'11~«1d!/2, c61'd, c62'11«.
~10!

The corresponding kinklike mode for the FF field is al
described by Eq.~10!, where w2n52w1n . Note that the
amplitudes of dark out-of-phase (q5p) SLMs are likewise
given by Eqs.~9! and~10! provided one changes the sign
ca together with the transformationan→(21)nan . It turned
out that SLM shapes obtained by direct numerical calcu
tions are in good agreement with Eqs.~4!–~6!, ~9!, and~10!.
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57 2347STRONGLY LOCALIZED MODES IN DISCRETE . . .
We mention that a few SLMs derived have their resp
tive counterparts in continuum media, whereas most of th
are unique for discrete systems. For example, the extrem
localized dark mode, where the FF amplitude differs only
a single site~odd mode! or at two sites~even mode! from the
uniform background, may form providedb5bca@2g(2ca
1cb)] 21; see Eqs.~4!, ~9!, and ~10!. Such an odd mode is
plotted in Fig. 2~a!. Note the peculiar shape of the SH fie
when the amplitudec61 exceeds the background amplitud
c6n , n>2. This corresponds to the formation of the doub
hump dark solutions, which may also exist for both the
and the SH fields and for the localization at more than th
sites. Propagation of such a mode where five channels
involved is shown in Fig. 2~b! for the SH field. As can be
seen, numerical calculations demonstrate an appreciabl
bustness of these modes upon propagation.

Apart from SLMs discussed above, we have also
served gray, antidark~or bright on a nonzero background!
modes both for the SH and FF waves as well as some ex
ones, e.g., a symbiotic pair of a gray FF wave and a dou
hump antidark SH wave. As an example, stable propaga
of the antidark SLM is presented in Fig. 3.

The stability of dark SLMs is essentially determined
the stability of the background against spatial modulatio
So it has been shown that in the continuum case the d
solitary wave is unstable due to MI of the background@23#.

FIG. 2. Evolution of the normalized intensity of out-of-pha
odd dark SLMs:~a! a SLM where a single-site localized FF
locked to a double-hump SH component and~b! a double-hump
dark SLM where excitation is spread over five sites~the corre-
sponding FF field has the same shape!. The parameters areca5cb

50.1, b522, andb521.
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Thus it is in order to check the dark SLMs derived abo
against MI.

To do this the stationary plane-wave solution@see Eqs.~2!
and ~3!# is slightly modulated:a→a1jn(t) and b→b
1zn(t), where jn5u1exp(i@Qn2Kz#)1u2exp(2i@Qn
2K*z#) and zn5v1exp(i@Qn2Kz#)1v2exp(2i@Qn2K*z#).
By inserting this into Eqs.~1! and performing a linear stabil
ity analysis, we end up with a characteristic equation forK.
For the situation we are concerned with here (q50,p) this
equation reduces toK41a2K21a050, with

a254g2~b222a2!2 f 22g2,
~11!

a05~ f g!22~2gbg!228~ga!2f g1~2ga!4,

where f 52gb62ca(12cosQ), g54gb64ca22cbcosQ
2b, and the upper~lower! sign applies toq50 ~p!. The MI
gain G5uIm Ku is then given as

G5
1

&
uIm@2a26~a2

224a0!1/2#1/2u.

In the long-wavelength limit~small Q! the MI gain ap-
proaches that of the continuum model@27#. The maximum
MI gain is plotted in Fig. 4 as a function of the stationary S
amplitudeb and the mismatchb for in-phase (q50) and
out-of-phase (q5p) solutions. With regard to the dispersio
relation ~3!, these two cases correspond to opposite sign
dispersion of the linear waves. Evidently, the change of
character of dispersion critically affects the stability beha
ior. Although the stability ranges considerably differ for th
two regimes, a common stable region with~b,0 andb,0!
can be identified. The consequences of the background
bility properties for the dynamics of dark SLMs can be se
in Fig. 5. The propagation of two dark kinklike SLMs tha
are in close proximity in theb-b plane is displayed. The
obviously stable SLM corresponds to the domain whereG
50 holds@Fig. 5~a!#. A slight change of the SH amplitudeb
causes the solution to move to the unstable region. A

FIG. 3. Stable propagation of an antidark SLM~the normalized
SH intensity is shown!. The corresponding FF field has the sam
shape. The parameters areca5cb50.1, b521.8, b520.7, and
q5p.
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result, the dark SLM becomes unstable and decays a
some distance@Fig. 5~b!# as do all SLMs that were terme
‘‘exotic’’ above.

In conclusion, families of bright as well as dark strong
localized modes in discrete quadratic media have b
shown to exist. Among them are solutions that have no co
terparts in discrete systems studied previously. A particu
feature of SLMs in quadratic media consists in that FF so

FIG. 4. Maximum MI gain of the background as a function
the normalized SH amplitude and the wave-vector mismatch.
plane-wave solution exists in the shaded region. Bright regions
respond to stable solutions (G50). The parameters areca5cb

50.1 and~a! q50 and~b! q5p.
e

er

n
n-
r
-

tions of different topologies form bound states with the sa
second-harmonic SLM. As far as bright SLMs are co
cerned, it has been shown that odd solutions are stable.
numerical finding agrees with the fact that the Peier
Nabarro potential for this kind of solution attains a min
mum. The stability of dark SLMs critically depends on th
dispersion behavior of linear waves and the mismatch.
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FIG. 5. Propagation of a dark, kinklike in-phase SLM~the nor-
malized FF intensity is shown!. The parameters areca5cb50.1,
b522, and ~a! b520.76→Gmax50 and ~b! b520.72→Gmax
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